Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2-Dibromo- N -(4-fluorophenyl)acetamide

Xiangjun Qian, ${ }^{\text {a }}$ Zheng Fang, ${ }^{\text {a }}$ Shuxin Bao, ${ }^{\text {a }}$ Kai Guo ${ }^{\text {b* }}$ and Ping Weib

${ }^{\text {a }}$ School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: fzcpu@163.com

Received 10 April 2012; accepted 10 May 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.058 ; w R$ factor $=0.094 ;$ data-to-parameter ratio $=15.5$.

In the crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{FNO}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding results in sixmembered rings and links the molecules into chains running parallel to the c axis. The dihedral angle between the fluorophenyl ring and the acetamide group is $29.5(5)^{\circ}$.

Related literature

For background information, see: Fang et al. (2012). For related crystal structures, see: Gowda et al. (2009); Feng et al. (2012).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{FNO}$
$c=9.426(2) \AA$
$M_{r}=310.96$
$\beta=96.33$ (3) ${ }^{\circ}$
Monoclinic, $P 2_{1} / c$
$a=9.746$ (2) \AA 。
$b=10.980(2) \AA$
$V=1002.5(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$$
\mu=8.06 \mathrm{~mm}^{-1}
$$

$$
T=293 \mathrm{~K}
$$

Data collection

Enraf-Nonious CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.975, T_{\text {max }}=0.991$
1937 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058 \quad 118$ parameters
$w R\left(F^{2}\right)=0.094 \quad$ H-atom parameters constrained
$S=1.00$
1827 reflections
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

1827 independent reflections 900 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.068$
3 standard reflections every 200 reflections
intensity decay: 1%
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.50 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 0 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.06	$2.868(7)$	156
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.37	$3.178(9)$	140

Symmetry code: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2533).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fang, Z., Zhang, F., Zou, B. \& Guo, K. (2012). Acta Cryst. E68, o1757.
Gowda, B. T., Foro, S., Suchetan, P. A. \& Fuess, H. (2009). Acta Cryst. E65, 02172.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1824 [doi:10.1107/S1600536812021174]

2,2-Dibromo- N -(4-fluorophenyl)acetamide

Xiangjun Qian, Zheng Fang, Shuxin Bao, Kai Guo and Ping Wei

Comment

As a part of our studies on the synthesis of Ezetimibe (Fang et al., 2012), the title compound which is one of the derivates of an intermediate, has been synthesized and its crystal structure is reported in this paper.

In the title molecule (Fig. 1), the dihedral angle between fluorophenyl ring (F/C3-C8) and acetamide group ($\mathrm{O} / \mathrm{N} / \mathrm{C} 1 / \mathrm{C} 2$) group is $29.5(5)^{\circ}$. The carbonyl O atom is hydrogen bonded to hydrogen atoms at N and C 1 , resulting in six membered rings linking the molecules into chains running parallel to the c-axis (Fig. 2 and Tab. 1). The bond distances and angles in the title molecule are in excellent agreement with the corresponding bond distances and angles reported in closely related structures (Gowda et al., 2009; Feng et al., 2012).

Experimental

To 3-ethoxy- N-(4-fluorophenyl)acrylamide (1 g) was added 1,4-dioxane (20 ml) and water (20 ml) in a 50 ml flask. The solution was cooled to 273 K in an ice bath and N-bromosuccinimide (1.6 g) was added after 30 minutes. The solution was stirred at room temperature for 3 h . Then, the solution was heated to 353 K , after 40 minutes, the resulting mixture was concentrated under vacuum, the solid was collected by vacuum filtration, washed with cold water. Finally, the product was separated by silica gel column (yield $=59 \%$). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ and $0.98 \AA$, for aryl and methyne H -atoms, respectively. The $U_{\text {iso }}(\mathrm{H})$ were allowed at $1.2 U_{\mathrm{eq}}(\mathrm{N} / \mathrm{C})$.

Computing details

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software (Enraf-Nonius, 1989); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figure 1
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2
A view of the $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots}$ Ohydrogen bonds (dotted lines) in the crystal structure of the title compound.

2,2-Dibromo- N-(4-fluorophenyl)acetamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{FNO}$
Monoclinic, $P 2_{1} / c$
$M_{r}=310.96$
Hall symbol: -P 2ybc
$a=9.746(2) \AA$
$b=10.980(2) \AA$
$c=9.426(2) \AA$
$\beta=96.33(3)^{\circ}$
$V=1002.5(3) \AA^{3}$
$Z=4$
$F(000)=592$
$D_{\mathrm{x}}=2.060 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonious CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.975, T_{\text {max }}=0.991$
1937 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.094$
$S=1.00$
1827 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9-12^{\circ}$
$\mu=8.06 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

1827 independent reflections
900 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-11 \rightarrow 0$
$k=0 \rightarrow 13$
$l=-11 \rightarrow 11$
3 standard reflections every 200 reflections
intensity decay: 1%

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.024 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
F	$0.4558(5)$	$0.2056(4)$	$0.4060(6)$	$0.0868(17)$
Br 1	$0.27410(10)$	$0.98435(8)$	$0.42192(10)$	$0.0675(3)$
Br 2	$-0.02715(10)$	$0.90635(10)$	$0.29891(11)$	$0.0840(4)$
O	$0.2133(6)$	$0.7340(5)$	$0.2350(5)$	$0.0635(17)$
N	$0.2193(6)$	$0.6579(5)$	$0.4588(6)$	$0.0439(17)$
H0A	0.1995	0.6743	0.5434	0.053^{*}
C1	$0.1342(8)$	$0.8605(6)$	$0.4178(8)$	$0.048(2)$
H1A	0.1111	0.8455	0.5149	0.058^{*}
C2	$0.1936(8)$	$0.7438(7)$	$0.3585(8)$	$0.046(2)$

C3	$0.2775(8)$	$0.5405(6)$	$0.4353(8)$	$0.0390(19)$
C4	$0.2452(8)$	$0.4467(7)$	$0.5254(8)$	$0.052(2)$
H4A	0.1850	0.4610	0.5936	0.062^{*}
C5	$0.3007(9)$	$0.3355(8)$	$0.5140(9)$	$0.059(3)$
H5A	0.2770	0.2713	0.5708	0.070^{*}
C6	$0.3943(8)$	$0.3195(8)$	$0.4150(10)$	$0.054(2)$
C7	$0.4260(8)$	$0.4084(8)$	$0.3246(8)$	$0.056(2)$
H7A	0.4856	0.3933	0.2561	0.067^{*}
C8	$0.3694(8)$	$0.5186(7)$	$0.3364(7)$	$0.046(2)$
H8A	0.3923	0.5815	0.2771	0.055^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F	$0.081(4)$	$0.047(3)$	$0.135(5)$	$0.008(3)$	$0.025(3)$	$-0.004(3)$
Br 1	$0.0902(7)$	$0.0504(6)$	$0.0640(6)$	$-0.0033(6)$	$0.0179(5)$	$-0.0068(5)$
Br 2	$0.0681(7)$	$0.1079(10)$	$0.0749(8)$	$0.0201(7)$	$0.0034(5)$	$0.0095(7)$
O	$0.116(5)$	$0.052(4)$	$0.026(3)$	$0.013(4)$	$0.020(3)$	$-0.002(3)$
N	$0.067(5)$	$0.037(4)$	$0.030(4)$	$-0.005(4)$	$0.016(3)$	$-0.003(3)$
C 1	$0.075(6)$	$0.037(5)$	$0.035(5)$	$-0.001(4)$	$0.017(4)$	$0.007(4)$
C 2	$0.063(6)$	$0.046(5)$	$0.029(5)$	$0.001(5)$	$-0.002(4)$	$-0.007(5)$
C 3	$0.050(5)$	$0.036(5)$	$0.028(5)$	$-0.006(4)$	$-0.010(4)$	$-0.001(4)$
C 4	$0.079(7)$	$0.042(6)$	$0.036(5)$	$-0.004(5)$	$0.009(5)$	$0.004(4)$
C 5	$0.063(6)$	$0.039(6)$	$0.075(7)$	$-0.014(5)$	$0.012(5)$	$0.014(5)$
C 6	$0.043(5)$	$0.040(6)$	$0.078(7)$	$0.004(5)$	$0.007(5)$	$-0.004(5)$
C 7	$0.064(6)$	$0.054(6)$	$0.051(6)$	$-0.005(5)$	$0.014(5)$	$-0.011(5)$
C 8	$0.056(5)$	$0.044(5)$	$0.037(5)$	$0.000(5)$	$0.009(4)$	$0.010(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

F-C6	1.394 (8)	C3-C4	1.392 (9)
$\mathrm{Br} 1-\mathrm{C} 1$	1.923 (7)	C4-C5	1.344 (9)
Br2-C1	1.896 (7)	C4-H4A	0.9300
$\mathrm{O}-\mathrm{C} 2$	1.205 (7)	C5-C6	1.386 (10)
$\mathrm{N}-\mathrm{C} 2$	1.339 (8)	C5-H5A	0.9300
$\mathrm{N}-\mathrm{C} 3$	1.436 (8)	C6-C7	1.354 (10)
$\mathrm{N}-\mathrm{H} 0 \mathrm{~A}$	0.8600	C7-C8	1.340 (9)
C1-C2	1.536 (10)	C7-H7A	0.9300
C1-H1A	0.9800	C8-H8A	0.9300
C3-C8	1.384 (9)		
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 3$	124.8 (6)	C5-C4-C3	120.2 (8)
$\mathrm{C} 2-\mathrm{N}-\mathrm{H} 0 \mathrm{~A}$	117.6	C5-C4-H4A	119.9
$\mathrm{C} 3-\mathrm{N}-\mathrm{H} 0 \mathrm{~A}$	117.6	C3-C4-H4A	119.9
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 2$	109.1 (5)	C4-C5-C6	118.0 (8)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	107.6 (5)	C4-C5-H5A	121.0
$\mathrm{Br} 2-\mathrm{C} 1-\mathrm{Br} 1$	111.3 (3)	C6-C5-H5A	121.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6	C7-C6-C5	123.1 (8)
$\mathrm{Br} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6	C7-C6-F	118.6 (8)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6	C5-C6-F	118.3 (8)

supplementary materials

$\mathrm{O}-\mathrm{C} 2-\mathrm{N}$	$125.6(8)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$118.3(8)$
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 1$	$122.2(7)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	120.8
$\mathrm{~N}-\mathrm{C} 2-\mathrm{C} 1$	$112.3(6)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	120.8
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$119.3(7)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$121.0(7)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{N}$	$123.7(7)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N}$	$116.8(7)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	119.5
$\mathrm{C} 3-\mathrm{N}-\mathrm{C} 2-\mathrm{O}$	$1.4(13)$	$\mathrm{N}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-177.0(7)$
$\mathrm{C} 3-\mathrm{N}-\mathrm{C} 2-\mathrm{C} 1$	$-178.8(6)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$2.7(13)$
$\mathrm{Br} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O}$	$50.2(9)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-3.8(14)$
$\mathrm{Br}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O}$	$-70.7(9)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{F}$	$177.9(7)$
$\mathrm{Br} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N}$	$-129.7(6)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$3.4(13)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N}$	$109.4(6)$	$\mathrm{F}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.3(7)$
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 3-\mathrm{C} 8$	$30.9(11)$	$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-2.0(12)$
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 3-\mathrm{C} 4$	$-153.6(7)$	$\mathrm{N}-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$1.0(11)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.4(12)$		$176.4(7)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 0 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.06	$2.868(7)$	156
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.37	$3.178(9)$	140
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots \mathrm{O}$	0.93	2.42	$2.916(9)$	113

Symmetry code: (i) $x,-y+3 / 2, z+1 / 2$.

